The P Cygni supergiant [OMN2000] LS1 - implications for the star formation history of W51
نویسنده
چکیده
Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1, and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the star formation history of W51. Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the range of 13.2-13.7kK and log(L∗/L⊙)≤5.75, it is significantly cooler, less luminous, and less massive than proposed by previous authors. The presence of such a star within W51 shows that star formation has been underway for at least 3Myr, while the formation of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of formation of young massive clusters at ages ≥9Myr was lower than currently observed. We find no evidence of internally triggered, sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.
منابع مشابه
Astronomy & Astrophysics The P Cygni supergiant [ OMN 2000 ] LS 1 – implications for the star formation history of W 51
Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1, and a combination of theoretical evolutionary calculations and Monte Carlo simulations t...
متن کاملPulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I
We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...
متن کاملForty Years of X-Ray Binaries
In 2012 it was forty years ago that the discovery of the first X-ray binary Centaurus X-3 became known. That same year it was discovered that apart from the High-Mass X-ray Binaries (HMXBs) there are also Low-Mass X-ray Binaries (LMXBs), and that Cygnus X-1 is most probably a black hole. By 1975 also the new class of Be/X-ray binaries was discovered. After this it took 28 years before ESAs INTE...
متن کاملEmbedded Star Clusters in the W 51 Giant Molecular Cloud
We present sub-arcsecond (0.35-0.9), near-infrared J,H,K band photometric observations of six fields along the W51 Giant Molecular Cloud (W51 GMC). Our observations reveal four new, embedded clusters and provide a new high-resolution (0.35) view of the W51IRS2 (G49.5-0.4) region. The cluster associated with G48.9-0.3 is found to be a double cluster enclosed in a nest of near-infrared nebulosity...
متن کاملProper Motions of Oh Masers and Magnetic Fields in Massive Star-forming Regions
We present data of proper motions of OH masers in the massive star-forming regions ON 1, K3-50, and W51 Main/South. OH maser motions in ON 1 are consistent with expansion at approximately 5 km s−1, likely tracing the expanding ultracompact H II region. Motions in K3-50 are faster and may be indicating the final stages of OH maser emission in the source, before the OH masers turn off as the H II...
متن کامل